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ABSTRACT

The transport of energetic charged particles through magnetized plasmas is ubiquitous in

interplanetary space and astrophysics, and the important physical quantities are the along-

field and cross-field spatial diffusion coefficients of energetic charged particles. In this paper,

the influence of solar wind on particle transport is investigated. Using the focusing equation,

we obtain along- and cross-field diffusion coefficient accounting for the solar wind effect. For

different conditions, the relative importance of solar wind effect to diffusion are investigated.

It is shown that when energetic charged particles are close to the sun, for along-field diffusion

the solar wind effect needs to be taken into account. These results are important for studying

energetic charged particle transport processes in the vicinity of the sun.

Keywords: Interplanetary turbulence (830); Magnetic fields (994); Solar energetic particles

(1491)

1. INTRODUCTION

The charged energetic particles emitted by the sun, known as solar energetic particles (SEPs), have crucial

impacts on the environment of interplanetary and planetary space (Schlickeiser 2002; Reames 2017). For
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example, SEPs can cause geomagnetic and ionospheric storms on the Earth, and even pose a threat to the

safe operation of the ground power systems and cause leaks in underground oil pipelines. In addition,

these energetic particles can reduce the reliability of spacecraft-borne detectors and endanger the health

of astraurants and aircrew (Lanzerotti 2017; Mertens et al. 2018). The turbulent magnetized plasmas in

the interplanetary space, e.g., the solar wind, have a significant impact on the transport of solar energetic

particles. Therefore, it is extremely important to investigate the propagation of solar energetic particles

through the solar wind (Jokipii 1966; Zhang 1999; Schlickeiser 2002; Matthaeus et al. 2003; Qin 2007;

Schlickeiser et al 2007; Schlickeiser & Shalchi 2008; Shalchi 2010; Qin & Zhang 2014; Wang & Qin 2015;

Zhang & Zhao 2017; Zhang et al. 2019; Zhao et al. 2017).

Due to the interaction with the background and superposed turbulent magnetic fields, the motion of

charged energetic particles can be modelled as two components of motions, i.e., the helical motion around

the mean magnetic field lines and the superposed stochastic one (Schlickeiser 2002; Shalchi 2009). There-

fore, various statistical methods have to be utilized in related studies (Jokipii 1966; Schlickeiser 2002;

Matthaeus et al. 2003; Shalchi 2009, 2010, 2020b). The well-known Master equation in statistical physics,

which provides the most fundamental description of the transport of charged energetic particles through

magnetized plasmas, is too complicated to be used in analytical investigations (Schlickeiser 2002; Shalchi

2009). Therefore, in the previous papers the relatively simple equations, such as the Fokker-Planck equa-

tion, have been widely used in plasma physics, astrophysics and space physics. The focusing equation,

the special version of the Fokker-Planck equation, has been extensively employed in the research of the

energetic particle transport in the heliosphere and the magnetosphere (Skilling 1971; Schlickeiser 2002;

Qin et al. 2005, 2006; Zhang et al. 2009; Dröge et al. 2010; Zuo et al. 2011; Wang et al. 2012; Qin et al.

2013; Zuo et al. 2013; Wang et al. 2014; Zhang et al. 2019; Qin & Qi 2020).

The focusing equation includes all the important transport effects of SEPs in solar wind plasmas, e.g.,

the pitch-angle diffusion, the cross-field diffusion, the spatial convection, the adiabatic cooling, the adia-

batic focusing, and so on, among which, the spatial convection, the adiabatic cooling, and the adiabatic

focusing are affected by solar wind velocity effects (Skilling 1971; Schlickeiser 2002; Forbes et al. 2006;

Shalchi 2009; Zhang & Zhao 2017; Wijsen et al. 2019; Zhang et al. 2019; Bian & Emslie 2020). These
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effects in the focusing equation are not isolated from each other, but have mutual influence. The along-

and cross-field spatial diffusion are very important transport processes of energetic charged particles, so

they are widely studied in plasma physics (Schlickeiser 2002; Qin 2007; Shalchi 2009; Qin & Zhang 2014;

Qin & Shalchi 2014; Shalchi 2020b). In addition, the impacts of along-field adiabatic focusing effect on the

along- and cross-field diffusion have been extensively studied (Roelof 1969; Earl 1976; Kunstmann 1979;

Beeck & Wibberenz 1986; Bieber & Burger 1990; Kota 2000; Schlickeiser & Shalchi 2008; Shalchi 2011;

Litvinenko 2012a,b; Shalchi & Danos 2013; He & Schlickeiser 2014; Wang & Qin 2016; Wang et al. 2017;

Wang & Qin 2018, 2019).

For the along-field diffusion, three different definitions of diffusive coefficient have been proposed in the

past decades, i.e., the displacement variance definition

κDV
zz =

1

2
lim
t→t∞

dσ2

dt
(1)

with the first- and second-order moments of charged particle distribution function, the Fick’s law definition

κFL
zz =

J

X
(2)

with X = ∂F/∂z, and the TGK formula definition

κTGK
zz =

∫ ∞

0

dt〈vz(t)vz(0)〉. (3)

If the mean magnetic field is uneven along the field lines, it has been proved that different definitions of

along-field diffusion coefficient are not equivalent to each other, i.e., κDV
zz , rather than κFL

zz and κTGK
zz , is the

most appropriate definition (Wang & Qin 2018, 2019). In addition, it is demonstrated that the cross-field

diffusion coefficient κ⊥ is modified by along-field non-uniformity of the mean magnetic field (Wang et al.

2017). Moreover, the influence of along-field adiabatic focusing on the momentum transport have also been

investigated (Schlickeiser & Shalchi 2008; Litvinenko & Schlickeiser 2011; Wang & Qin 2021).

Cross-field diffusion, i.e., perpendicular diffusion, is another crucial transport process for charged parti-

cles in both space physics and laboratory plasma physics. Cross-field diffusion coefficient, which is the

important parameter describing perpendicular transport, has been widely investigated in previous studies

(Matthaeus et al. 2003; Shalchi 2010; Qin & Zhang 2014; Shalchi 2017, 2019, 2020a,b, 2021a,b, 2022). A
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large number of studies have demonstated that along-field diffusion has a strong influence on perpendicular

transport (Matthaeus et al. 2003; Shalchi et al. 2004, 2006; Shalchi 2008, 2010, 2017, 2018, 2019, 2020a,b,

2021a). In addition, along-field adiabatic focusing effect is another factor influencing cross-field diffusion

(Wang et al. 2017). However, the effect of solar wind on cross-field diffusion has not been investigated in

the previous paper. In this paper, we also explore this problem.

The remainder of this paper is organized as follows. In Section 2, the focusing equation that satisfies

particle number conservation is introduced. In Section 3, the along- and cross-field diffusion coefficients of

energetic charged particles including solar wind effects are derived. In Section 4, the influence of the solar

wind effect on along-field diffusion is explored, with the dimensionless quantities determining the relative

importance of the solar wind effect to diffusion transport derived. In Section 5, the effect of solar wind on

cross-field diffusion is expored. We conclude and summarize our results in Section 6.

2. THE FOCUSING EQUATION

The Fokker-Planck equation is formulated as follows (Duderstadt & Martin 1979; Huang & Ding 2008;

Zank 2014)

∂ f

∂t
+ ∇ · (u f ) + ∇p · (a f ) =∇ · (κ1 · ∇ f ) + ∇p ·

(

κ
p

1
· ∇p f

)

+ ∇ · [κ21 · ∇ (κ22 · ∇ f )
]

+∇p ·
[

κ
p

21
· ∇p

(

κ
p

22
· ∇p f

)]

+ · · · . (4)

Here, f = f (r, p, t) is the distribution function of charged energetic particles, t is time, u is particle velocity,

and a is particle acceleration. In addition, the operators ∇ and ∇p are the spatial and momentum Laplacians,

respectively. For simplicity, only the first- and second-order derivative terms of the Fokker-Planck equation

are usually retained (Huang & Ding 2008), thus Equation (4) becomes

∂ f

∂t
+ ∇ · (u f ) + ∇p · (a f ) = ∇ · (κ · ∇ f ) + ∇p ·

(

κp · ∇p f
)

. (5)

In general, the terms of the first- and second-order derivative in Equation (5) can describe most of the

important specific physical effects of energetic particle transport in solar wind plasmas, e.g., pitch-angle

scattering, cross-field diffusion, along-field adiabatic focusing, adiabatic cooling, along-field spatial con-

vection, etc. To encompasses all of the aforementioned physical processes, the focusing equation becomes
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the Fokker-Planck equation,

∂ f

∂t
= ∇ · (κ⊥ · ∇ f ) − ∇ ·

[(

uµb̂ + V
)

f
]

+
∂

∂µ

(

Dµµ

∂ f

∂µ

)

+
1

p2

∂

∂p

{

p3

[

1 − µ2

2

(

∇ · V − b̂b̂ : ∇V
)

+ µ2 b̂b̂ : ∇V

]

f

}

+
∂

∂µ

{

1 − µ2

2

[

− u

L
− µ

(

∇ · V − 3b̂b̂ : ∇V
)

]

f

}

, (6)

where κ⊥ is the perpendicular diffusion coefficient tensor, u is the particle speed, µ is pitch-angle cosine, b̂ is

the unit vector along the background magnetic field, p is the magnitude of momentum, Dµµ(µ) is the pitch-

angle diffusion coefficient, L =
(

b̂ · ∇ ln B
)−1

with solar mean magneitc field B is the characteristic length

of the adiabatic focusing, and V is the solar wind velocity. The latter equation satisfies the conservation

law of particle number, and the detailed derivative is shown in Appendix A. For convenience, the focusing

equation can be rewritten as follows

∂ f

∂t
= ∇ · (κ⊥ · ∇ f ) − ∇ ·

[(

uµb̂ + V
)

f
]

+
∂

∂µ

(

Dµµ

∂ f

∂µ

)

+
∂

∂µ

















u
(

1 − µ2
)

2L
f

















+
1

p2

∂

∂p

{

p3

[

1 − µ2

2

(

∂Vx

∂x
+
∂Vy

∂y

)

+ µ2∂Vz

∂z

]

f

}

− ∂

∂µ

[

µ

(

∂Vx

∂x
+
∂Vy

∂y
− 2

∂Vz

∂z

)

f

]

. (7)

The derivation details from Equation (6) to (7) are shown in Appendix B.

3. THE DIFFUSION COEFFICIENTS INCLUDING SOLAR WIND EFFECTS

In this section, we explore the diffusion coefficients of energetic charged particles including solar wind

effects.

3.1. The along-field diffusion coefficient including solar wind effects

Firstly, we derive the along-field diffusion coefficient formula of energetic particles including solar wind.

3.1.1. The simplified Fokker-Planck equation

For simplificty, the effect of solar wind spatial gradient are ignored. Moreover, by performing the integra-

tion
∫

dx
∫

dy on Equation (7), we find

∂ fa

∂t
= −uµ

∂ fa

∂z
− ∂

∂z

(∫

dx

∫

dyVz f

)

+
∂

∂µ

















Dµµ

∂ fa

∂µ
−

u
(

1 − µ2
)

2L
fa

















. (8)
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Here, fa(z, µ, t) =
∫

dx
∫

dy f (x, y, z, µ, t) is the distribution function. Now, we obtain the simplified Fokkerr-

Planck equation.

3.1.2. The anisotropic distribution function ga(z, µ, t)

The distribution function of charged energetic particles can be divided into the isotropic part Fa, which

satisfies

Fa =
1

2

∫ 1

−1

dµ fa, (9)

and the anisotropic component, which satisfies the condition

∫ 1

−1

dµga = 0. (10)

That is, the following formula holds

fa = Fa + ga, (11)

By integrating Equation (8) over µ from −1 to 1, we can obtain

∂Fa

∂t
= −u

2

∂

∂z

∫ 1

−1

dµµga −
∂

∂z

(∫

dx

∫

dyVzF

)

. (12)

Here, F =
∫ 1

−1
dµ f /2 is employed. In addition, the boundary condition Dµµ(µ = ±1) = 0 is also used.

Similarly, integrating Equation (8) over µ from −1 to µ, we obtain

∂Fa

∂t
(µ + 1)+

∂

∂t

∫ µ

−1

dνga = −u
µ2 − 1

2

∂Fa

∂z
− u

∂

∂z

∫ µ

−1

dννga − (µ + 1)
∂

∂z

(∫

dx

∫

dyVzF

)

− ∂
∂z

(∫

dx

∫

dyVz

∫ µ

−1

dνg(ν)

)

+ Dµµ

∂ga

∂µ
−

u
(

1 − µ2
)

2L
Fa −

u
(

1 − µ2
)

2L
ga (13)

with g(x, y, z, µ, t) = f (x, y, z, µ, t) − F(x, y, z, t). Equation (13) can be rewritten as

∂ga

∂µ
+

u
(

1 − µ2
)

ga

2DµµL
+

u
(

1 − µ2
)

2Dµµ

(

∂Fa

∂z
+

Fa

L

)

= Φa(µ) (14)

with

Φa(µ) =
1

Dµµ

[

∂Fa

∂t
(µ + 1) +

∂

∂t

∫ µ

−1

dνga

+u
∂

∂z

∫ µ

−1

dννga + (µ + 1)
∂

∂z

(∫

dx

∫

dyVzF

)

+
∂

∂z

(∫

dx

∫

dyVz

∫ µ

−1

dνg(ν)

) ]

(15)
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To continue, Equation (14) can be rewritten as (He & Schlickeiser 2014; Wang & Qin 2018, 2019)

∂

∂µ

{[

ga(µ) + L

(

∂Fa

∂z
+

Fa

L

) ]

e−M(µ)

}

= e−M(µ)Φa(µ) (16)

with

M(µ)=− u

2L

∫ µ

−1

dν
1 − ν2

Dνν(ν)
, (17)

By integrating Equation (16) over ν from −1 to µ, we can obtain the anisotropic distribution function as

follows

ga(µ) = −L

(

∂Fa

∂z
+

Fa

L

)



















1 − 2eM(µ)

∫ 1

−1
dµeM(µ)



















+ eM(µ)



















Ra(µ) −

∫ 1

−1
dµeM(µ)Ra(µ)
∫ 1

−1
dµeM(µ)



















(18)

with

Ra(µ) =

∫ µ

−1

dνe−M(ν)Φa(ν). (19)

3.1.3. The governing equation of the isotropic distribution function Fa(z, t)

In order to derive the governing equation of the isotropic distribution function Fa(z, t), we have to deduce

the following integral

u

2

∂

∂z

∫ 1

−1

dµµga=

(

u
∂Fa

∂z
+ uL

∂2Fa

∂z2

)

∫ 1

−1
dµµeM(µ)

∫ 1

−1
dµeM(µ)

+
u

2

∫ 1

−1

dµµeM(µ)



















∂

∂z
Ra(µ) − 1

∫ 1

−1
dµeM(µ)

∫ 1

−1

dµeM(µ) ∂

∂z
Ra(µ)



















. (20)

The latter formula shows that the derivative of Ra(z, µ, t) with respect to z has to be deduced

∂

∂z
Ra(µ) =

∂2Fa

∂z∂t

∫ µ

−1

dν
e−M(ν)

Dνν

(ν + 1) +

∫ µ

−1

dν
e−M(ν)

Dνν

(ν + 1)
∂2

∂z2

(∫

dx

∫

dyVzF

)

+

∫ µ

−1

dν
e−M(ν)

Dνν

∂2

∂t∂z

∫ ν

−1

dρ

∫

dx

∫

dyVzF + u

∫ µ

−1

dν
e−M(ν)

Dνν

∂2

∂z2

∫ ν

−1

dρρga

+

∫ µ

−1

dν
e−M(ν)

Dνν

∂2

∂z2

(∫

dx

∫

dyVz

∫ ν

−1

dρga

)

. (21)

With Equations (20) and (21), the governing equation of the isotropic distribution function can be found

∂Fa

∂t
=− ∂

∂z

(∫

dx

∫

dyVzFa

)

− κz

∂Fa

∂z
+ κzz

∂2Fa

∂z2
+ κtz

∂2Fa

∂t∂z
+ κV

zz

∂2

∂z2

(∫

dx

∫

dyVzFa

)

(22)
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with and

κz = −u

∫ 1

−1
dµµeM(µ)

∫ 1

−1
dµeM(µ)

, (23)

κzz = −uL

∫ 1

−1
dµµeM(µ)

∫ 1

−1
dµeM(µ)

+
u2

2

∫ 1

−1

dµµeM(µ)

∫ µ

−1

dν
e−M(ν)

Dνν

∫ ν

−1

dρρ



















1 − 2eM(ρ)

∫ 1

−1
dµeM(µ)



















−u2

2

∫ 1

−1
dµµeM(µ)

∫ 1

−1
dµeM(µ)

∫ 1

−1

dµeM(µ)

∫ µ

−1

dν
e−M(ν)

Dνν

∫ ν

−1

dρρ



















1 − 2eM(ρ)

∫ 1

−1
dµeM(µ)



















, (24)

κtz = −
u

2

∫ 1

−1

dµµeM(µ)

∫ µ

−1

dνe−M(ν) ν + 1

Dνν

+
u

2

∫ 1

−1
dµµeM(µ)

∫ 1

−1
dµeM(µ)

∫ 1

−1

dµeM(µ)

∫ µ

−1

dνe−M(ν) ν + 1

Dνν

−u

2

∫ 1

−1

dµµeM(µ)

∫ µ

−1

dν
e−M(ν)

Dνν

∫ ν

−1

dρ



















2eM(ρ)

∫ 1

−1
dµeM(µ)

− 1



















+
u

2

∫ 1

−1
dµµeM(µ)

∫ 1

−1
dµeM(µ)

∫ 1

−1

dµeM(µ)

∫ µ

−1

dν
e−M(ν)

Dνν

∫ ν

−1

dρ



















2eM(ρ)

∫ 1

−1
dµeM(µ)

− 1



















(25)

κV
zz =

u

2

∫ 1

−1
dµµeM(µ)

∫ 1

−1
dµeM(µ)

∫ 1

−1

dµeM(µ)

∫ µ

−1

dν
e−M(ν)

Dνν

(ν + 1)

−u

2

∫ 1

−1

dµµeM(µ)

∫ µ

−1

dν
e−M(ν)

Dνν

(ν + 1). (26)

Here, only the terms containing the first- and second-order derivatives are retained. In fact, the higher-order

derivative terms do not affect the results obtained in this article (Wang & Qin 2018, 2019).

3.1.4. The along-field diffusion coefficient formula

To derive the formula of mean square displacement definition, we have to obtain the first- and second-

order moments of the isotropic distribution function, which are shown as follows

d

dt
〈z〉 = 〈Vz〉 + κz, (27)

d

dt

〈

z2
〉

= 2 〈zVz〉 + 2κz〈z〉 + 2κzz − 2κtz

d

dt
〈z〉 + 2κV

zz 〈Vz〉 . (28)

Combining the latter formulas gives

1

2

dσ2

dt
=

1

2

d

dt

(〈

z2
〉

− 〈z〉2
)

= T1 − T2 + T3 + T4 (29)
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with

T1 = κzz, (30)

T2 = κtzκz, (31)

T3 = ζ = 〈zVz〉 − 〈z〉 〈Vz〉 , (32)

T4 =
(

κV
zz − κtz

)

〈Vz〉 . (33)

From Equations (32) and (33), we can find that the mean square displacement definition of along-field

diffusion coefficient includes the solar wind and adiabatic focusing effects. According to the results obtained

by Wang & Qin (2019), the term T4 is approximately equal to zero. Thus, Equation (29) becomes

1

2

dσ2

dt
=

1

2

d

dt

(〈

z2
〉

− 〈z〉2
)

= T1 − T2 + T3. (34)

Note that if we only consider adiabatic focusing, Equation (34) becomes

1

2

dσ2

dt
= T1 − T2 = κzz − κtzκz, (35)

which is identical to the result derived by Wang & Qin (2018).

3.2. The cross-field diffusion coefficient including solar wind effects

Next, we derive the cross-field diffusion coefficient of energetic charged particles including solar wind

effect.

3.2.1. The govering equation of isotropic distribution function

The starting point of the investigation in this subsection is also the focusing equation, which is displayed

in Section 2. For Equation (7), by ignoring the terms containing spatial derivaitve of solar wind speed and

integrating over µ from −1 to 1, we can obtain the governing equation of isotropic distribution function,

which is given as follows

∂F′

∂t
= ∇ ·

(

κ⊥ · ∇F′
)

− u

2

∂

∂z

∫ 1

−1

dµµg − ∇ ·
(

VF′
)

(36)

with

F′ =
1

2

∫ 1

−1

dµ f . (37)
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Here, g(x, y, z, µ, t) is the anisotropic distribution function. Performing integrating
∫

dy
∫

dz on Equation

(36) yields

∂Fb

∂t
=

∂

∂x

(

κ⊥
∂Fb

∂x

)

− ∂

∂x

(∫

dy

∫

dzVxF
′
)

. (38)

Here, Fb = F(x, t) is the isotropic distribution function satisfying the following formula

Fb =
1

2

∫ 1

−1

dµ

∫

dy

∫

dz f . (39)

3.2.2. The mean square displacement definition of perpendicular diffusion in x direction

From Equation (38), the first- and second-order moments of charged particle distribution function can be

obtained as

d

dt
〈x〉 =

∫

dx

∫

dy

∫

dzVxF′ = 〈Vx〉 , (40)

d

dt

〈

x2
〉

= 2κ⊥ + 2

∫

dx

∫

dy

∫

dzxVxF′ = 2κ⊥ + 2 〈xVx〉 . (41)

Combining the latter formulas gives

κDV
xx =

1

2

dσ2
x

dt
=

1

2

d

dt

(

〈x2〉 − 〈x〉2
)

= κ⊥ + η (42)

with

η = 〈xVx〉 − 〈x〉 〈Vx〉 . (43)

Here, κ⊥ = κ
FL
xx is the Fick’s law definition. In addition, η is the solar wind effect on the cross-field diffusion.

Thus, Equation (43) indicates that the cross-field diffusion is affected by solar wind effect.

In the following, we would discuss the influence of solar wind on along- and cross-field diffusion, i.e.,

Equations (32) and (43), with the typical parameter values, e.g., solar wind speed V ∼ 3× 105 m/s, the solar

rotation speed ω ∼ 3 × 10−6 /s, the energetic proton speed u ∼ 107 m/s, the particle parallel mean free path

λ ∼ 1010 m, and the parameter λ⊥ ≡ 3κ⊥/u = 109 m.

4. THE INFLUENCE OF SOLAR WIND ON ALONG-FIELD DIFFUSION
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In this section, based on Equation (34) we discuss the solar wind effect on along-field diffusion of energetic

charged particles. If we only consider solar wind effect, Equation (34) is simplifies as

κDV
zz =

1

2

dσ2

dt
= T1 + T3 = κzz + ζ, (44)

with

ζ = 〈zVz〉 − 〈z〉 〈Vz〉 . (45)

Here, σ2 =
〈

z2
〉

− 〈z〉2, and ζ is the influence of solar wind on along-field diffusion coefficient. It is obvious

that Equation (29) includes not only adiabatic focusing effect but also solar wind effect. Equations (44) and

(45) show that the mean square displacement definition κDV
zz of energetic charged particles is not equal to the

Fick’ law definition κFL
zz . According to the results found by Wang & Qin (2019), with along-field adiabatic

focusing, the mean square displacement definition κDV
zz is more appropriate than both Fick’ law one κFL

zz and

the Taylor-Green-Kubo one κTGK
zz . If the same operation performed as Wang & Qin (2019) for Equation

(22), the similar conclusion can be easily obtained.

Equations (44) and (45) show that the mean square displacement definition κDV
zz accounts for the solar

wind effect. Therefore, when the transport of SEPs parallel to the mean magnetic field is investigated, the

relative importance of the solar wind effect to along-field diffusion has to be explored.

4.1. The integrating form of the solar wind effect, ζ

In order to investigate the relative importance of the solar wind effect on along-field diffusion, it is neces-

sary to derive the specific form of the solar wind effect, ζ. Due to the magnetic freezing effect of plasmas

and the solar rotation, the mean magnetic field of the sun presents a spiral form, which is called the Parker

spiral. For simplicity, we consider it in the ecliptic plane. As shown in Figure 1, we consider a point A with

the solar magnetic field line LMF going through it. We set a coordinate system x′ − y′ − z′, with the y′-axis

pointing from the sun to point A, the z′-axis perpendicular to the ecliptic plane pointing towards the north,

the x′-axis defined using the right-hand rule, and the origin O located at the center of the sun. We also set a

polar coordinate system r − θ, with the polar axis r tangent to LMF at point O, the polar angle θ defined in a

clockwise direction. In addition, another coordinate system x′′−y′′− z′′ is established by rotating x′−y′− z′
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system with π/2 − θA clockwise through point O, where θA is the polar angle of point A. Additionly, we set

a magnetic coordinate system x − y − z, with the z-axis along the tangent of magnetic field line towards its

positive direction, the y-axis parallel to z′, and the x-axis satisfying right-hand rule. Moreover, the tangent

of LMF at point A is the straight line y′ = kx′ + r0 with the intercept r0, i.e., the distance from O to A. We

suppose the straight line can be written as y′′ = k′x′′+l in x′′−y′′−z′′ system. Furthermore, normal equation

of LMF at point A is y′ = −x′/k + r0.

Additionly, the angle between z-axis and y′-axis is denoted as ψ. Therefore, the component of solar wind

speed along solar magnetic field can be expressed as

Vz = V cosψ, (46)

where V is the magnitude of the solar wind velocity V. It is obvious that the angle ψ varies depending on the

point on the magnetic field, and obeys the following formula on the ecliptic plane (e.g., Qin & Wu 2021)

cosψ =

(

1 +
ω2r2

V2

)−1/2

. (47)

Here, ω is the angular velocity of the sun, and r is the radial distance from the center of the sun to the point

on solar magentic field. Thus, the influence ζ of the solar wind can be written as

ζ =

∫ z2

z1

dzF(z, t)V

(

1 +
ω2r2

V2

)−1/2

−
∫ z2

z1

dzzF(z, t)

∫ z2

z1

dzF(z, t)V

(

1 +
ω2r2

V2

)−1/2

, (48)

where z1 and z2 are the integral lower and upper limits, respectively. The integrals in Equation (48) are

along the curve of the mean magnetic field, and the normalization condition needs to be satisfied

∫ z2

z1

dF(z, t) = 1. (49)

4.2. Exploring the relative importance of solar wind effect to along-field diffusion

In this paper, for the sake of simplicity, we assume that the speed V of the solar wind is constant. Thus,

Equation (48) can be written as

ζ = V

∫ z2

z1

dzzF(z, t)

(

1 +
ω2r2

V2

)−1/2

− V

∫ z2

z1

dzzF(z, t)

∫ z2

z1

dzF(z, t)

(

1 +
ω2r2

V2

)−1/2

. (50)

In coodinate system x′ − y′ − z′, if integral interval is small enought, the straight line y′ = kx′ + r0 with

k = tan β = cotψ can be used to approxmiately replace the curve of magnetic field line for the integrals in



DIMENSIONLESS QUANTITIES DETERMING INFLUENCE OF SOLAR WIND TO DIFFUSION 13

Equation (50), and the distribution function F(x′, t) can be used to replace F(z, t). Accordingly, as shown

in Figure 1, the distance from O to any point, (x′, y′), between the integral interval [z1, z2] can be expressed

as r =
√

x′2 + (kx′ + r0)2. In addition, we can obtain the formulas dz =
√

1 + (dy′/dx′)2dx′ and z ≈
√

1 + (dy′/dx′)2x′. To proceed, if the integral interval [z1, z2] is set as [−0.1r0, 0.1r0] in coordinate system

x′ − y′ − z′, with the above setting, Equation (51) becomes

ζ =V
(

1 + k2
)

∫ 0.1r0

−0.1r0

dx′x′F(x′, t)

















1 +
ω2

[

x′2 + (kx′ + r0)2
]

V2

















− 1
2

−V
(

1 + k2
)3/2

∫ 0.1r0

−0.1r0

dx′x′F(x′, t)

∫ 0.1r0

−0.1r0

dx′F(x′, t)

















1 +
ω2

[

x′2 + (kx′ + r0)2
]

V2

















− 1
2

. (51)

For mathematical tractability, in this article, we only explore the tail of SEPs, for which the distribution

function F(x′, t) is approximately uniform and is also approximately an even function of variable x′ in

integral interval [−0.1r0, 0.1r0]. Thus, the second term on the right-hand side of Equation (51) is equal to

zero, and we have

ζ =V
(

1 + k2
)

∫ 0.1r0

−0.1r0

dx′x′F(x′, t)

















1 +
ω2

[

x′2 + (kx′ + r0)2
]

V2

















− 1
2

. (52)

In fact, based on the characterisitcs of each SEP events, the integral interval can also be set to other values.

In this paper, we only qualitatively explore the solar wind effect on energetic particle along-field diffusion.

Therefore, the interval length in Equation (52) does not affect the findings obtained in this paper.

With the integral interval [−0.1r0, 0.1r0] and Equation (49), the normalization condition becomes

F(x′, t) =
5

r0

. (53)

Accordingly, the background solar wind effect on along-field diffusion can be written as

ζ =
(

1 + k2
) 5V

r0

∫ 0.1r0

−0.1r0

dx′x′

















1 +
ω2

[

x′2 + (kx′ + r0)2
]

V2

















− 1
2

. (54)

With integration by parts and a lengthy mathematical performance, the latter formula becomes

ζ =
2k V2

ω
√

(

0.1 + 1
1+k2 k

)2 (

1 + k2
)

+ 1

(1+k2)
+ V2

ω2r2
0

+

√

(

−0.1 + 1
1+k2 k

)2 (

1 + k2
)

+ 1

(1+k2)
+ V2

ω2r2
0
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− 5k
√

1 + k2

V2

ω
ln

(

0.1 + 1
1+k2 k

) √
1 + k2 +

√

(

0.1 + 1
1+k2 k

)2 (

1 + k2
)

+ 1

(1+k2)
+ V2

ω2r2
0

(

−0.1 + 1
1+k2 k

) √
1 + k2 +

√

(

−0.1 + 1
1+k2 k

)2 (

1 + k2
)

+ 1

(1+k2)
+ V2

ω2r2
0

. (55)

Obviously, the latter equation contains the following two dimensionless quantities

α1 ≡
V

ωr0

, (56)

α2 ≡ |k|. (57)

For different limits of α1 and α2, the relative importance of the solar wind effect on along-field diffusion, ζ,

can be discussed. The results are summarized in Table 1.

4.2.1. The condition α1 ≫ α2 ≫ 1

Here, we suppose

α1 ≫ α2 ≫ 1, (58)

which contains the inequalities

α1 ≫ α2, (59)

α1 ≫ 1, (60)

α2 ≫ 1. (61)

For the condition (58), Equation (55) is simplified as

ζ = |k|Vr0. (62)

It is known that particle diffusion coefficient κzz can be written as

κzz =
uλ

3
, (63)

where λ is the mean free path of particles. With Equations (62) and (63), the relative importance of solar

wind effect, ζ, on the along-field diffusion is shown as follows

ζ

κzz

= 3|k|Vr0

uλ
. (64)
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It is obvious that the following dimensionless quantity

β1 = |k|
Vr0

uλ
(65)

determines the relative importance of ζ to κzz. If β1 & 1, the influence of solar wind effect, ζ, on the along-

field diffusion should be taken into account, conversely, if β1 ≪ 1, ζ can be ignored. For the typical values

of V , u, and λ in Section 3, the dimensionless quantity becomes

β1 = |k|r0

V

uλ
∼ 10|k|r0. (66)

Thus, we only need to explore the value of kr0. The solar magnetic field can be described by

r0 =
V

ω
θ (67)

with solar wind speed V and solar rotation speed ω. It is known that the angle θ of polar system inscreases

in an clockwise direction. The parametric formulas of Equation (67) in coordinate system x′′ − y′′ − z′′ are

shown as

x′′ =
V

ω
θ cos θ, (68)

y′′ =
V

ω
θ sin θ. (69)

The slope of the tangent line at the point A is k′ = tanφ with the angle φ between x′′-axis and the tangent.

With the latter equations, the tangent slope of point A on the magnetic field line in coordinate system

x′′ − y′′ − z′′ can be written as

k′ = tan φ =
dy′′

dx′′
=

dy′′/dθ

dx′′/dθ
=

θ + tan θ

1 − θ tan θ
. (70)

Similarly, the slope k of the tangent is k = tanϕ in coordinate system x′ − y′ − z′, which satisfies

k = tan ϕ = tan

(

φ + θ − π
2

)

=
2θ tan θ + tan2 θ − 1

θ + 2 tan θ − θ tan2 θ
. (71)

It is easily proved that slope k is the generally increasing function of variable θ. It is suggested that the

points with θ = nπ + π/2 for integer numbers n in Equation (71) are removable singularities, which do not
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affect the monotonicity of function k with θ. Therefore, the quantity k is an appropriate parameter to reflect

the influence of solar wind on particle transport, ζ, at different spatial locations within the heliosphere.

Accordingly, Equation (71) becomes

|k|r0 =
V

ω
θ

∣

∣

∣

∣

∣

∣

2θ tan θ + tan2 θ − 1

θ + 2 tan θ − θ tan2 θ

∣

∣

∣

∣

∣

∣

. (72)

If θ → 0, for typical parameter values V and ω listed above, we can obtain

|k|r0 → 1010m. (73)

Therefore, with Equation (66), we can find

β1 ∼ 10|k|r0 ∼ 1011 ≫ 1. (74)

In addition, Inequality (60) denotes r0 ≪ V/ω ∼ 1011m ∼ 1 AU, which indicates that the point A is located

in the inner heliosphere and Inequality (61). It is noted that Inequality (61), is consistent with the condition,

Inequality (58). However, Inequality (58) leads to the relation α1/α2 ≫ 1, i.e., |k|r0 ≪ V/ω, which is

contradictory to Equation (72) in the inner heliosphere. Therefore, for this case, the influence of solar wind

on the along-field diffusion, ζ, may not be taken into account.

4.2.2. The condition α2 ≫ α1 ≫ 1

In this subsection, we suppose

α2 ≫ α1 ≫ 1, (75)

which contains

α2 ≫ α1, (76)

α2 ≫ 1, (77)

α1 ≫ 1. (78)

Equation (55) becomes

ζ = −10
V2

ω
ln
α2

α1

. (79)
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With the along-field diffusion coefficient formula, i.e., Equation (63), we find

ζ

κzz

= −30
V2

uωλ
ln
α2

α1

. (80)

Obviously, the latter equation is determined by the following two dimensionless quantities

β2 =
V2

uωλ
, (81)

β3 =
α2

α1

=
ωr0|k|

V
. (82)

As shown in subsection 4.2.1, the condition α1 ≫ 1 and α2 ≫ 1 can only be satisfied in the inner helio-

sphere. However, from Inequality (76) we can obtain α2/α1 = β3 ≫ 1. For typical parameter values V and

ω in subsection 4.2.1, we find

|k|r0 ≫
V

ω
, (83)

which cannot be satisfied in the inner heliosphere. Therefore, in this condition, the solar wind effect on

along-field diffusion of energetic particles, ζ, might be ignored.

4.2.3. The condition α1 ∼ α2 ≫ 1

In the following, we suppose

α1 ∼ α2 ≫ 1, (84)

which contains two conditions

α1 ∼ α2, (85)

α1 ≫ 1, (86)

α2 ≫ 1. (87)

The condition (86) denotes |k|r0 ∼ V/ω, which is consistent with Equation (72) at least in the inner he-

liosphere. In addition, Inequality (86) corresponds to r0 ≪ V/ω ∼ 1011m, which indicates the point A is

located in the inner heliosphere. Inequality (87) also shows that the point A is close to the sun.
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Additionly, for the condition (84), Equation (55) is simplified as

ζ = 0.4
V2

ω
. (88)

The ratio of A to κzz is

ζ

κzz

= 1.2
V2

uωλ
, (89)

which shows that the following dimensionless quantity determines the relative importance of solar wind

effect

β2 =
V2

uωλ
. (90)

When β2 ∼ 1, the solar wind effect on along-field diffusion of energetic particles, ζ, is important. For the

typical parameter values V , ω, u, and λ listed in subsection 4.2.1, we can obtain β2 = 0.3. In summary, for

Inequality (84), i.e., the point A located in the inner heliosphere, solar wind effect on along-field diffusion,

ζ, is relatively important, so it should be considered.

4.2.4. The condition α1 ≫ 1 and α2 ≪ 1

Here, we suppose

α1 ≫ 1, (91)

and

α2 ≪ 1. (92)

For Inequalities (91) and (92), Equation (55) is simplified as

ζ = |k|Vr0, (93)

which is identical to Equation (62). Accordingly, the dimensionless quantity controlling the relative impor-

tance is

β1 = |k|
Vr0

uλ
. (94)
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In addition, Inequality (91), i.e., r0 ≪ V/ω, corresponds to r0 ≪ 1011m, which denotes that the point A

is in the inner heliosphere. However, Inequality (92) represents that the slope of tangent line is very small,

which indicates that the point A is located in the outer heliosphere. Thus, the two Inequalities (91) and (92)

are mutually contraditory. Therefore, for this case, the solar wind effect, ζ, might not be considered.

4.2.5. The condition α2 ≫ 1 and α1 ≪ 1

In this subsection, we suppose the two inequalities

α2 ≫ 1, (95)

α1 ≪ 1. (96)

Using the the latter two inequalities, from Equation (55) we can obtain

ζ = 10
V2

ω
. (97)

Comparing the latter formula with κzz, we can find the following dimensionless quantities

β2 =
V2

uωλ
. (98)

Inequality (95) indicates the point A is in the inner heliosphere. Additionly, for the typical parameter values

listed in Section 3, Inequality (96) denotes r0 ≫ 1011 m ∼ 1 AU which indicates that the point A is located

in the outer heliosphere. Thus, Inequatity (95) is contradictory with Inequality (96). Therefore, for this case

the solar wind effect, ζ, on energetic particle transport may not be considered.

4.2.6. The condition α1 ≪ 1 and α2 ≪ 1

Now, we suppose the two inequalities

α1 ≪ 1, (99)

α2 ≪ 1. (100)

For the typical parameter values listed in Subsection 4.2.1, Inequality (99) gives r0 ≫ 1011m, which indi-

cates the point A located in the outer heliosphere. This is consistent with Inequality (100).
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In addition, for the two Inequalitites (99) and (100), Equation (55) becomes

ζ = |k|V
2

ω
. (101)

By comparing the latter formula with κzz, we obtain

ζ

κzz

= 3
|k|V2

uωλ
, (102)

which is determined by the dimensionless quantities

β4 =
|k|V2

uωλ
. (103)

For the parameter values V , u, ω, and λ listed in Section 3, from Equation (103) we can obtain |k| ≥ 3, which

is contradictory to Inequality (100). Therefore, when energetic particle transport in the outer helioshere, the

solar wind effect, ζ, might not be taken into account.

4.3. Relative importance of the solar wind and adiabatic focusing effects

The second term on the right-hand side of Equation (29) was evaluated by Wang & Qin (2018, 2019) as

T2 = κzκtz ≈
14

135

uλ3

L2
. (104)

Acccordingly, the ratio of adiabatic focusing effect term T2 to along-field Fick’s law diffusion term T1 is

T2

T1

=
κzκtz

κzz

≈ 0.3ξ2. (105)

with the dimensionless quantity

ξ =
λ

L
. (106)

Here, λ is the mean free path of charged energetic particles and L is the characteristic length of adiabatic

focusing. Obviously, the dimensionless quantity ξ determines the relative importance of T2 to T1. From

Equations (105) and (106), we can find that if ξ & 1, adiabatic focusing effect need to be taken into account.

If ξ ≪ 1, the adiabatic focusing effect should be ignored.



DIMENSIONLESS QUANTITIES DETERMING INFLUENCE OF SOLAR WIND TO DIFFUSION 21

In Subsection 4.2, the influence of solar wind on along-field diffusion is explored. In the condition with

strong solar wind effect, α1 ∼ α2 ≫ 1, considering the formulas of the solar wind effect T3 and adiabatic

focusing effect T2, we have

T3

T2

=
27

7

V2L2

uωλ3
. (107)

Obviously, the following dimensionless quantity can be found

γ =
V2L2

uωλ3
=

V2

uωλ
ξ2. (108)

For typical parameter values in Section 3, thedimensionless quantity γ ≈ 0.3. Thus, if ξ ∼ 1 is satisfied,

both the solar wind effect and the adiabatic focusing effect should be considered.

5. THE INFLUENCE OF SOLAR WIND EFFECT ON CROSS-FIELD DIFFUSION

Next, based on Equation (43), we investigate the solar wind effect on eneregtic particle cross-field diffu-

sion.

5.1. The integrating form of the solar wind effect, η

From Equation (43), the solar wind effect on the cross-field diffusion can be written as

η =

∫ x0

−x0

dxxVxFb −
∫ x0

−x0

dxxFb

∫ x0

−x0

dxVxFb (109)

From Figure 1, the following formula can be found

V⊥ = V sinψ. (110)

In this article, for the sake of simplicity, we assume that V⊥ ∼ Vx and the solar wind speed V is constant.

Thus, Equation (109) becomes

η = V

∫ x0

−x0

dxxFb sinψ − V

∫ x0

−x0

dxxFb

∫ x0

−x0

dxFb sinψ. (111)

Obviously, the angle ψ varies depending on the point A and obeys the following formula on the ecliptic

plane (e.g., Qin & Wu 2021)

sinψ =
ωr

V

(

ω2r2

V2
+ 1

)− 1
2

. (112)
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Inserting the latter formula into Equation (111), we have

η = V

∫ x0

−x0

dxxFb

ωr

V

(

ω2r2

V2
+ 1

)− 1
2

− V

∫ x0

−x0

dxxFb

∫ x0

−x0

dxFb

ωr

V

(

ω2r2

V2
+ 1

)− 1
2

. (113)

To proceed, for simplicity, we assume that the distribution function Fb is approximately constant. Thus, the

formula
∫ x0

−x0
dxxFb = 0 holds, and Equation (113) becomes

η = V

∫ x0

−x0

dxxFb

ωr

V

(

ω2r2

V2
+ 1

)− 1
2

. (114)

From the equation of normal line, y′ = −x′/k + r0, we can obtain the formulas dx =
√

1 + (dy′/dx′)2dx′ =
√

1 + 1/k2dx′ and x =
√

1 + (d′y/dx′)2x′ =
√

1 + 1/k2x′, Equation (114) becomes

η = V

(

1 +
1

k2

) ∫ 0.1r0

−0.1r0

dx′x′Fb

ωr

V

(

ω2r2

V2
+ 1

)− 1
2

, (115)

where we set x0 = 0.1r0/ cosψ. Thus, from the normalization condition
∫ 0.1r0

−0.1r0
dx′Fb = 1, we can find

Fb =
5

r0

. (116)

Accordingly, Equation (115) becomes

η = V
5

r0

(

1 +
1

k2

) ∫ 0.1r0

−0.1r0

dx′x′
ωr

V

(

ω2r2

V2
+ 1

)− 1
2

. (117)

Using the dimensionless quantity α1 = V/(ωr0), we can rewrite Equation (115) as

η = V
5

r0

(

1 +
1

k2

) ∫ 0.1r0

−0.1r0

dx′x′
(

α2
1

r2
0

r2
+ 1

)− 1
2

. (118)

The latter equation is very complex, so it is not easy to be evaluated. However, the relation r0/r ∼ 1

approximately holds because the integral interval is small enough, so that Equation (118) can be qualitatively

explored for α1 ≫ 1 and α1 ≪ 1.

5.2. The condition α1 ≫ 1

For α1 ≫ 1, with r =
√

x′2 + (−x′/k + r0)2, Equation (118) is simplified as

η = 10
ω

r0

1 + k2

k2

∫ 0.1r0

0

dx′x′
√

x′2 + (−x′/k + r0)2. (119)
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After a lengthy mathematical performance, the latter equation becomes

η =
10

3
ωr2

0

(

1 + k2
)3/2

k3

{












(

0.1 − k

1 + k2

)2

+
k4

(

1 + k2
)2













3/2

−












k2

(

1 + k2
)2
+

k4

(

1 + k2
)2













3/2 }

. (120)

In the following, we evaluate the solar wind effect on cross-field diffusion, η, for α2 = |k| → ∞ and

α2 = |k| → 0, respectively.

5.2.1. The condition α2 = |k| → ∞

For the condition

α2 = |k| → ∞, (121)

we can easily obtain

η ≈ 1.5ωr2
0. (122)

Comparing the latter formula with κxx = uλ⊥/3 we obtain

η

κxx

= 4.5
ωr2

0

uλ⊥
∼
ωr2

0

uλ⊥
. (123)

Obviously, the following dimensionless quantity determines the relative importance of solar wind effect on

cross-field diffusion

δ1 =
ωr2

0

uλ⊥
. (124)

In the condition (121), the point A should be close to the sun. Thus, the distance r0 is much less than 1 AU,

i.e., r0 ≪ 1011 m. In addition, for the typical parameter values ω, u, and λ⊥ in Section 3, we have

δ1 ≪ 1, (125)

which indicates the solar wind effect on the along-field diffusion, η, may be ignored.

5.2.2. The condition α2 → 0

For α2 → 0, we can obtain

η ≈ 0.1
ωr2

0

k3
. (126)
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Comparing the term η and the cross-field diffusion coefficient κxx yields

η

κxx

= 0.3
ωr2

0

uλ⊥k3
. (127)

It is obvious that the following dimensionless quantity determines the relative importance of solar wind to

cross-field diffusion

δ2 =
ωr2

0

uλ⊥k3
. (128)

For the typical parameter values u, ω, λ⊥ in Section 3, we can obtain

δ2 ∼
(

10−11r0

)2 1

k3
. (129)

For δ2 ≥ 1, the relation k ≤
(

10−11r0

)2/3
holds. However, the condition α1 ≫ 1 corresponds to r0 ≪ V/ω ∼

1011 m, which denotes that the point A is in the inner heliosphere. The condition α1 ≫ 1 is contradictory to

α2 → 0 which indicates the point A in the outer heliosphere. Therefore, the solar wind effect on cross-field

diffusion, η, may be ignored.

5.3. The condition α1 ≪ 1

If α1 ≪ 1, with
∫ 0.1r0

−0.1r0
dxFb = 1, Equation (113) becomes

η =V

∫ 0.1r0

−0.1r0

dxxFb − V

∫ 0.1r0

−0.1r0

dxxFb = 0. (130)

Obviously, for this case, the solar wind effect, η, might not be taken into account.

6. SUMMARY AND CONCLUSION

In this paper, starting from the focusing equation, we derive the formulas of the mean square displacement

definitions of along- and cross-field diffusion coefficients, κDV
zz and κDV

xx , respectively. It is demonstrated that

κDV
zz includes solar wind effect, i.e., ζ = 〈zVz〉 − 〈z〉 〈Vz〉, and κDV

xx contains η = 〈xVx〉 − 〈x〉〈Vx〉.

For different limits of dimensionless quantities α1 = V/(ωr0) and α2 = |k|, the relative importance of the

solar wind effect on along-field diffusion, ζ, is expored, and corresponding dimensionless quantities are

obtained, which are summarized in Table 1. For the condition α1 ∼ α2 ≫ 1, we find that when the point A
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is close to the sun, the relative importance of solar wind effect on along-field diffusion, ζ, should be taken

into account. In this condition, we find that when ξ = λ/L ≥ 1, the adiabatic focusing effects need also to be

considered. Next, the relative importance of solar wind effect on cross-field diffusion, η, is investigated in

several extreme conditions, we find that the solar wind effect on cross-field diffusion, η, might be ignored.

The results obtained in this paper have certain significance in the transport of energetic particles not

only in the heliosphere, but also in many other scenarios, such as, planetary magnetoshere and ionoshere,

intersteller space, the spaces close to neutron stars, supernova remanents and so on. It is possible that in

some conditions, the solar wind effect on energetic particle diffusion in the heliosphere is not important, but

the background plasma speed effect on energetic particle diffusion in other scenarios is not ignorable.

In this article, the results we get are not very conclusive. We only perform the exploration in some

extreme conditions. In addition, we set some paramters with typical values as shown in Section 3, which

are standard in 1 AU for energetic particles. However, using the typical parameter values, we discuss solar

wind effect on diffusion coefficients in some special conditions, e.g., r0 ≪ 1 AU, in which the typical

parameter values may be not appropriate in the condition. In the future, we will investigate solar wind effect

on diffusion coefficients in more general conditions, using more reasonalble typical parameter values in

special conditions.

Other physical effects, e.g., solar wind of spatial derivative, momentum transport, etc., on both spatial

diffusion and drift coefficients, may also be investigated. In past decades, the non-diffusion, i.e., subdiffusion

and superdiffusion, has gained more and more interest due to its general applications in numerous research

field. We may also investigate the influence of the solar wind and adiabatic focusing on non-diffusion of

energetic particles.
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A. THE FOCUSING EQUATION SATISFYING PARTICLE NUMBER CONSERVATION LAW

The focusing equation, which has been broadly used to research charged particle transport, is as follow

∂ f

∂t
=∇ · (κ⊥ · ∇ f ) −

(

uµb̂ + V
)

· ∇ f +
∂

∂µ

(

Dµµ

∂ f

∂µ

)

+
dp

dt

∂ f

∂p
+

dµ

dt

∂ f

∂µ
(A-1)

with

dp

dt
= p

[

1 − µ2

2

(

∇ · V − b̂b̂ : ∇V
)

+ µ2 b̂b̂ : ∇V

]

, (A-2)

dµ

dt
=

1 − µ2

2

[

− u

L
− µ

(

∇ · V − 3b̂b̂ : ∇V
)

]

. (A-3)

Here, L =
(

b̂ · ∇ ln B
)−1

. However, this formulation does not satisfy particle number conservation law which

is one of the most important physical laws. Therefore, we have to find a focusing equation which satisfies

the particle number conservation law.

For spherical system (p, θ, φ), the nabla operator of momentum space is

∇p f =
∂ f

∂p
ep +

1

p

∂ f

∂θ
eθ +

1

p sin θ

∂ f

∂φ
eφ. (A-4)

In this paper, we only consider gyrotropic case, and Equation (A-4) becomes

∇p f =
∂ f

∂p
ep +

1

p

∂ f

∂θ
eθ. (A-5)

Because µ = cos θ, we have

∂

∂θ
=

∂

∂µ

∂µ

∂θ
= − sin θ

∂

∂µ
. (A-6)

Inserting the latter equation into Equation (A-5) gives

∇p f =
∂ f

∂p
ep − sin θ

1

p

∂ f

∂µ
eθ. (A-7)

To proceed, we have

a · ∇p f =
(

apep + aθeθ
)

·
(

∂ f

∂p
ep −

sin θ

p

∂ f

∂µ
eθ

)

= ap

∂ f

∂p
− aθ

sin θ

p

∂ f

∂µ
(A-8)

With the following formula

a · ∇p f =
dp

dt

∂ f

∂p
+

dµ

dt

∂ f

∂µ
, (A-9)
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we obtain

dp

dt
= ap, (A-10)

dµ

dt
= −aθ

sin θ

p
. (A-11)

That is, the latter formulas can be rewritten as

ap =
dp

dt
, (A-12)

aθ = −
dµ

dt

p

sin θ
. (A-13)

Considering Equations (A-2) and (A-3), we can find that

ap = p

[

1 − µ2

2

(

∇ · V − b̂b̂ : ∇V
)

+ µ2 b̂b̂ : ∇V

]

, (A-14)

aθ =
p

sin θ

1 − µ2

2

[

u

L
+ µ

(

∇ · V − 3b̂b̂ : ∇V
)

]

. (A-15)

Inserting formulas (A-12) and (A-13) into the following equation

∇p · (a f ) =
1

p2

∂

∂p

(

p2ap f
)

− 1

p

∂

∂µ
(sin θaθ f ) , (A-16)

we can obtain

∇p · (a f ) =
1

p2

∂

∂p

{

p3

[

1 − µ2

2

(

∇ · V − b̂b̂ : ∇V
)

+ µ2 b̂b̂ : ∇V

]

f

}

+
∂

∂µ

{

1 − µ2

2

[

− u

L
− µ

(

∇ · V − 3b̂b̂ : ∇V
)

]

f

}

. (A-17)

The Fokker-Planck equation is shown as

∂ f

∂t
+ ∇ · (v f ) + ∇p · (a f ) = ∇ · (κ · ∇ f ) + ∇p ·

(

κ · ∇p f
)

, (A-18)

which satisfies the particle number conservation law. By considering the latter formula and the following

fomulas

v = uµb̂ + V, (A-19)

∇ · (κ · ∇ f ) = ∇ · (κ⊥ · ∇ f ) , (A-20)

∇p ·
(

κ · ∇p f
)

=
∂

∂µ

(

Dµµ

∂ f

∂µ

)

, (A-21)
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Equation (A-18) becomes

∂ f

∂t
= ∇ · (κ⊥ · ∇ f ) − ∇ ·

[(

uµb̂ + V
)

f
]

+
∂

∂µ

(

Dµµ

∂ f

∂µ

)

+
1

p2

∂

∂p

{

p3

[

1 − µ2

2

(

∇ · V − b̂b̂ : ∇V
)

+ µ2 b̂b̂ : ∇V

]

f

}

+
∂

∂µ

{

1 − µ2

2

[

− u

L
− µ

(

∇ · V − 3b̂b̂ : ∇V
)

]

f

}

, (A-22)

which is our starting point of this paper.

In fact, if the incompressible condition

∇ · v + ∇p · a = 0 (A-23)

holds, Equation (A-1) can also satisfy particle number conservation. Now, the specific form of the incom-

pressible condition is derived. With the divergence formula

∇ · A =
1

r2

∂

∂r

(

r2 fr

)

+
1

r sin θ

∂

∂θ
(sin θ fθ) +

1

r sin θ

∂ fφ

∂φ
, (A-24)

for gyrotropic case the latter formula becomes

∇ · A =
1

r2

∂

∂r

(

r2 fr

)

+
1

r sin θ

∂

∂θ
(sin θ fθ) (A-25)

Using µ = cos θ, the latter formula can be rewritten as

∇ · A =
1

r2

∂

∂r

(

r2 fr

)

− 1

r

∂

∂µ
(sin θ fθ) . (A-26)

In addition, the divergence formula for velocity is shown as

∇ · v = ∇ ·
(

uµb̂ + V
)

= ∇ · V. (A-27)

Similarly, with Equations (A-12) and (A-13), the divergence formula for acceleration can be obtained

∇p · a =
1

p2

∂

∂p

(

p2ap

)

− 1

p

∂

∂µ
(sin θaθ)

=
1

p2

∂

∂p

{

p3

[

1 − µ2

2

(

∇ · V − b̂b̂ : ∇V
)

+ µ2 b̂b̂ : ∇V

]}

−1

p

∂

∂µ

{

sin θ
p

sin θ

1 − µ2

2

[

u

L
+ µ

(

∇ · V − 3b̂b̂ : ∇V
)

]}

(A-28)
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To continue, the latter formula can be simplified as

∇p · a = ∇ · V +
(

3µ2 − 1
)

b̂b̂ : ∇V +
uµ

L
. (A-29)

Combining Equations (A-27) and (A-29) yields

∇ · v + ∇p · a = 2∇ · V +
(

3µ2 − 1
)

b̂b̂ : ∇V +
uµ

L
= 0 (A-30)

Thus, the condition of particle number conservation can be rewritten as

−uµ

L
= 2∇ · V +

(

3µ2 − 1
)

b̂b̂ : ∇V (A-31)

If the latter condition is satisfied, Equation (A-1) also satisfies the particle number conservation law.

B. THE FOCUSING EQUATION WITHOUT TENSOR OPERATION

For mathematical tractability, the focusing equation can be rewritten as

∂ f

∂t
= ∇ · (κ⊥ · ∇ f ) − ∇ ·

[(

uµb̂ + V
)

f
]

+
∂

∂µ

(

Dµµ

∂ f

∂µ

)

+
1

p2

∂

∂p

{

p3

[

1 − µ2

2

(

∂Vx

∂x
+
∂Vy

∂y

)

+ µ2∂Vz

∂z

]

f

}

+
∂

∂µ

{

1 − µ2

2

[

− u

L
− µ

(

∂Vx

∂x
+
∂Vy

∂y
− 2

∂Vz

∂z

) ]

f

}

, (B-1)

with the following formulas

VS W = VS W
z b̂ + VS W

x n̂x + VS W
y n̂y, (B-2)

∇ = ∂

∂z
b̂ +

∂

∂x
n̂x +

∂

∂y
n̂y, (B-3)

b̂ · ∇ = b̂ ·
(

∂

∂z
b̂ +

∂

∂x
n̂x +

∂

∂y
n̂y

)

=
∂

∂z
, (B-4)

∇ · b̂ =
(

∂

∂z
b̂ +

∂

∂x
n̂x +

∂

∂y
n̂y

)

· b̂ = ∂

∂z
, (B-5)

b̂ · VS W = b̂ ·
(

VS W
z b̂ + VS W

x n̂x + VS W
y n̂y

)

= VS W
z , (B-6)

b̂b̂ : ∇VS W =
(

b̂ · ∇
) (

b̂ · VS W
)

=
∂VS W

z

∂z
, (B-7)

∇ · VSW =

(

∂

∂z
b̂ +

∂

∂x
n̂x +

∂

∂y
n̂y

)

(

VS W
z b̂ + VS W

x n̂x + VS W
y n̂y

)

=
∂VS W

z

∂z
+
∂VS W

x

∂x
+
∂VS W

y

∂y
, (B-8)
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∇ · VSW − b̂b̂ : ∇VS W =
∂VS W

x

∂x
+
∂VS W

y

∂y
, (B-9)

∇ ·
(

VS W F
)

=

(

∂

∂z
b̂ +

∂

∂x
n̂x +

∂

∂y
n̂y

)

(

VS W
z F b̂ + VS W

x F n̂x + VS W
y F n̂y

)

=
∂
(

VS W
z F

)

∂z
+
∂
(

VS W
x F

)

∂x
+
∂
(

VS W
y F

)

∂y
, (B-10)

∇ · VSW − 3b̂b̂ : ∇VS W =
∂VS W

x

∂x
+
∂VS W

y

∂y
− 2

∂VS W
z

∂z
. (B-11)
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A

O
the sun 

solar magnetic field

C

B

Figure 1. Schematic diagram of magnetic coordinate system x − y − z, solar coordinate systems x′ − y′ − z′ and

x′′ − y′′ − z′′, the polar coordinate system, which are in ecliptic plane, and z′ ‖ z′′.
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Table 1. The dimensionless quantities determining the relative importance of solar wind effect on along-field diffusion

Range solar wind effect

α1 ≫ α2 ≫ 1 A = |k|Vr0 β1 =
|k|Vr0

uλ

α2 ≫ α1 ≫ 1 A = −10V2

ω
ln

ωr0 |k|
V

β2 =
V2

uωλ
,

β3 =
ωr0 |k|

V

α1 ∼ α2 ≫ 1 A = 0.4V2

ω β2 =
V2

uωλ

α1 ≫ 1, α2 ≪ 1 A = |k|Vr0 β1 =
|k|Vr0

uλ

α2 ≪ 1, α1 ≫ 1 A = 10V2

ω β2 =
V2

uωλ

α1 ≪ 1, α2 ≪ 1 A = |k|V2

ω β4 =
|k|V2

uωλ
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